Click on Calendar to change date of plots. Today's Date is .
Our assimilation procedure currently runs over 4-day cycles. Every day, a data assimilation run is performed for the previous 4 days, producing an estimate of the physical ocean state in which the model initial conditions have been modified. Several physical data sets are assimilated. AVISO Sea Level Anomalies and subtidally averaged NOAA tide-gauge data provide information of the sea surface height. OSTIA Sea Surface Temperature and AQUARIUS Sea Surface Salinity provide additional sea surface information. Subsurface hydrography derives from several platforms: Argo buoys provide subsurface information broadly throughout our domain. In addition, glider lines in the central and southern California regions are supported by SCCOOS and CeNCOOS. Glider information off the Washington coast is supported by NANOOS. We are grateful to the agencies and individuals who have made this data available for use in this ocean state estimate.
We note that not all data mentioned above is generally assimilated into every cycle. Some platforms (e.g., Argo) do not necessarily collect information within our domain during every assimilation cycle. In addition, AQUARIUS data is presently only available in delayed-time mode and not in real-time. However, this information is useful for reanalyses, which we run occasionally to update our historical estimates.
Figures above present snapshots of surface ocean properties as produced by a numerical model, the Regional Ocean Modeling System (ROMS). The properties shown are (1) sea surface height (SSH), which varies about 1/2 meter within this domain; (2) sea surface temperature (SST), which usually shows a strong gradient between the warm subtropical waters to the southwest and cold subpolar waters to the north or cold upwelled waters along the coast; (3) sea surface salinity (SSS), which shows a typical CCS value of about 33 psu (practical salinity units which is close to g/kg), with modest variation north to south owing to a relative increase in precipitation to the north and evaporation to the south; and (4) sea surface chlorophyll-a concentration (SCHL, mg/m^3). Superposed on SST, SSS, and SCHL are surface velocity vectors which show the direction and relative intensity of the instantaneous circulation. Although only surface features are presented above, the model resolves the full 3-dimensional structure of the ocean extending from the surface to the ocean bottom as deep as 5000 m beneath the surface.
CCS Physical Model: The ocean circulation is modeled using the Regional Ocean Modeling System (ROMS). Our domain extends from midway down the Baja Peninsula to the southern tip of Vancouver Island at 1/10 degree (roughly 10 km) resolution, with 42 terrain-following levels resolving vertical structure in ocean properties. The model is forced at the surface by atmospheric fields produced by the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) which is run in near-real-time by the Naval Research Laboratory. Oceanic fields at the lateral boundaries are obtained from a larger, basin-scale data assimilative model, HYCOM. The model does not include freshwater forcing by rivers, and it neglects tidal motion. Ocean model fields are stored as daily snapshots at midnight GMT.
Assimilation Approach The solution shown on this page applies the Incremental, Strong-Constraint 4-D Variational Assimilation (4DVar) method. This approach finds changes to the initial ocean state during an assimilation cycle that minimize a cost function representing the sum of squared model-data differences and squared deviations of a background model ocean state. This method can also expand the control-space to include changes in the surface forcing and lateral boundary conditions, though such changes are not included in the shown solution. This approach is referred to as incremental as it determines increments to the background ocean state that are assumed to be small. The phrase strong-constraint means that errors in ocean dynamics are neglected (i.e., model dynamics are applied as a strong constraint).
https://oceanmodeling.ucsc.edu:8443/thredds
Many people are responsible for various aspects of ROMS and the overall data assimilation code. Major contributors to UCSC data assimilation projects are listed below.
Andrew M. Moore
Hernan Arango
Hajoon Song
Milena Veneziani
Nicole Goebel
Christopher A. Edwards
Patrick Drake
Paul Mattern
Jerome Fiechter
Gregoire Broquet
James Doyle (NRL) has provided considerable assistance in our use of the COAMPS atmospheric fields.
We are also indebted to Brian Powell (UH) and John Wilkin (Rutgers) who have written and kindly shared outstanding scripts to carry out various ROMS-related operations.
This web-page and the near-real-time ocean state estimation system is supported by the National Oceanographic and Atmospheric Administration (NOAA) through a grant from the Central and Northern California Ocean Observing System (CeNCOOS).We gratefully acknowledge financial support for various elements of this data assimilative system by the National Oceanographic Partnership Program (NOPP) , the Office of Naval Research (ONR), the National Oceanographic and Atmospheric Administration (NOAA) , the National Science Foundation (NSF), and the Gordon and Betty Moore Foundation .